martes, 18 de noviembre de 2014



Función inversa


La fórmula para el logaritmo de una potencia dice en particular que para cualquier número x,
\log_b \left (b^x \right) = x \log_b(b) = x.
En lenguaje llano, tomando la x-ésima potencia de b y luego el base-b logaritmo se vuelve a obtener x. De modo contrario, dado un número positivo y, la fórmula
b^{\log_b(y)} = y
dice que tomando primero el logaritmo y después exponenciando se vuelve a obtener y. Así, las dos maneras posibles de combinar (o componer) logaritmos y exponenciales vuelve a dar el número original. Por lo tanto, el logaritmo en base b es lafunción inversa de f(x) = bx.5

No hay comentarios:

Publicar un comentario